
Environment for Network-On-a-Chip Hardware/Software
co-design, co-simulation and co-debugging

Michael Dolinsky

New IT Research Labs, Gomel Fr.Scaryna State University, Rechickoe Shosse 33/191, Gomel, Belarus

Dolinsky@gsu.unibel.by, http://NewIT.gsu.unibel.by
Abstract

This paper proposes tools for hardware/software co-design, co-simulation and co-debugging of complex multiprocessor systems from System-On-a-Chip (SoC) to Network-on-a-Chip (NoC). The basic conceptual features of the tools are as follows: universality, automatic generation of low-level descriptions for designed system, team and distributed development support, through verification, productive simulation, flexible integration with emulation, local and distance learning support. This paper also contains description of the application results that were produced when similating the NomeNet - system with up to 1000 microprocessors. This submission is for the special issue on Networks on Chip.

Keywords: Network-on-a-Chip, System-On-a-Chip, Hardware/Software Co-Simulation, Co-Debugging, Co-Design
1. Introduction

 The number of processor cores as well as other IP-cores on a chip is increasing up to tens and hundreds ones. So the Network-On-a-Chip (NOC) will become a reality in the nearest future [6-7]. Benini and De Micheli [6] forecast: "By the end of the decade SoCs, using 50-nm-transistors operating below 1 volt will grow to 4 billion transistors running at 10 GHz". Transmitting digital values on wires will be inherently unreliable and non-deterministic. The bus-based organization is not sufficient for integrated systems with tens to hundreds of masters. Direct and indirect networks are a real alternative. In the direct or point-to-point network each node directly connects to a limited number of neighboring nodes. These connections may be changed dynamically. Such approach is based on special compilers. The indirect networks connection between nodes must go through a set of switches. Switches themselves do not perform information processing - they only provide a programmable connection between their ports, setting up the communication path that can change over time. Packetizing data deals effectively with communication errors.

 So NoC - is multiprocessor system with from tens to hundreds processor cores, memory banks and other hardware. Extra important for NoC development are the tools for NoC HW/SW co-design, co-simulation and co-debugging. There are very few such tools now. Among known to me only Seamless from Mentor Graphics can solve such problems today. But Seamless demand user to have a set of other tools (Renoir, ModelSim, XRAY Debugger) so need to be slow as well as Seamless don't provide open APIs to users.

 From 1987 New IT Research Labs (http://NewIT.gsu.unibel.by) at the Gomel Fr.Scaryna State University (Belarus) have been developing the tools combined now into IEESD (Integrated Environment for Embedded Systems Development) [1-5], that provide the following possibilities:

· application software debugging with an architecture retargeting

· high level hardware design

· HW/SW co-design, co-simulation, co-debugging for multiprocessor systems.

 Evidently, such system ideally accords to NoC design and development.

 The article has the following structure. Conceptual basis of the IEESD is represented in section 1. IEESD components are described in the section 2. Section 3 contains application examples for NoC models developed with IEESD as well as the simulation productivity evaluation.

2. IEESD conceptual basis

 The basic conceptual features of IEESD are as follows: universality, automatic generation of low-level descriptions for designed embedded system, team and distributed development support, through verification, productive simulation, flexible integration with emulation, local and distance learning support.

2.1. Universality

 Modern embedded systems use different microcontrollers (MCs), microprocessors (MPs) and digital signal processors (DSPs).

 IEESD provides open application programming interface (API) for interaction with modeling components. So designers can implement models for MPs, MCs, DSPs and other components, they need, using high level programming language (C++, Object Pascal, for example). Optimized event simulation technique guaranties correct and quick simulation for multiprocessor systems. Realized techniques and tools for processor and peripheral models development simplify and accelerate the process.

 In addition, IEESD includes a rich library of parameterized components such as logical elements, coders, decoders, selectors, adders, comparators, flip-flops, registers, counters, RAMs/ROMs, CPUs and others. There may also be used user-defined component libraries. IEESD provides visual hierarchical design for both ascending and descending development styles.

 To provide using of different programming languages (assembler, С, JAVA, FORT, etc.) for application software development, IEESD have a family of debug information converters to single IEESD debug format.

 Moreover, IEESD includes retargetable assembler (RtASM) to do own built-in assembler, compiler compilers (UniSAn) to do own built-in compilers for other programming languages and common linker and debug information processing library.

 UniICS, a special hardware complement to IEESD, provides emulation of hardware designs in FPGA as well as interaction of simulated designs with external hardware.

 UniICE, another hardware complement to IEESD, integrates the tools with external processor emulators.

 So IEESD can be applied when developing wide range of embedded systems.

2.2. Automatic generation of low-level descriptions for designed embedded system

 Essential feature of IEESD is its seamless integration with lower level CADs. That is provided by the following way: synthesizable VHDL descriptions are generated for hardware components debugged
in IEESD as well as machine codes for target architectures are generated for software components debugged in IEESD. Moreover, the results of the project simulation pointed by designer can be converted into testbenches for lower level CADs.

2.3. Team and distributed development support

 Modern embedded systems with complex functions, multicomponent structure and short time frame for development demand team design. IEESD supports team design based on modern features of computer networks. It can be installed on Windows NT/2000 server and started from the network Windows 95/98/NT/2000 workstations. The designers can use common parts of projects from special server directory as well as unique parts of projects from private network directories or from local directories on their workstations.

2.4. Through verification

 Through verification is used for IEESD development as well as for development of embedded systems with IEESD.

 There are more than 500 test projects for IEESD development control. Before approving new IEESD version these projects are once more simulated in IEESD, then syntesizable VHDL-description and testbench are generated for each project. These VHDL-descriptions and testbenches are simulated with third party products (with Max+Plus II, ModelSim etc.) in order to check the identity of results. Finally, all projects have to be loaded
and emulated in FPGA. There is a built-in language for test scenarios. The WEB-visualization of the testing results is provided.

 Through verification of designing embedded systems means the following. This approach requires creating of adequate external environment model and full set of testbenches for the embedded system at the beginning of design
. To do the best test set it is recommended to elaborate "Golden Model" of the embedded system using high level programming language (C++, Object Pascal, for example). Joint simulation of the embedded system’s "Golden Model", external environment and testbenches provides clear definition of the embedded system to be designed.

 The design development in such a way is a consecutive decomposition of the "Golden Model" into set of interacting components. For each such component designer can use programming languages or "top-down"/"bottom-up"
combination of ready library units.

Prepared testbenches can be used during a whole design process.

2.5. Productive simulation

 At software alone simulation there may be simulated up to ten million processor instructions per second. At the joint hardware/software simulation this factor essentially depends on hardware activity and range from thousands to hundreds of thousands instructions per second. These productivity numbers were got at PC workstation Pentium II, 1 GHz, 256 Mb RAM.

2.6. Flexible integration with emulation

 Designers using IEESD can load hardware parts of their projects into FPGA and continue debug process of the whole project in IEESD. From the other hand, designers can join to IEESD external processor emulator.

2.7. Local and distance learning support

 In addition to traditional help and documentation (in English and Russian) provided automatic test mode and integration with distance learning system (http://dl.gsu.unibel.by) developed be New IT Research Labs as well.

3. IEESD components

 IEESD includes the following components:

 WInter - IDE for software development of multiprocessor system with possibility of high level programming simulation of hardware and external environment.

 HLCCAD - (High Level Chip Computer-Aided Design) - IDE for hardware development with possibility to simulate software as machine codes executed by high level programming processor models and to simulate behavior of external environment.

 GENMOD - tools for processor and peripherals models generation

 MPDD - tools for microprogram device development

 UniICS - universal in-circuit simulator

 UniICE - universal in-circuit emulator

 UniSAn - universal syntax analyzer

 RtASM - retargetable assembler

 The distinctive features of each one among listed
 components are given below. The common advantage of all these components is INTEROPERABILITY. That is, from one hand, each of them is independent tool and can be used without others. But from the other hand, each of them provides open API which can be used for integration into a common product - IEESD, for example.

3.1. HLCCAD - High Level Chip Computer-Aided Design

 As the best from such systems, HLCCAD allows visual hierarchical design. But in addition, HLCCAD provides using models of MPs, MCs and DSPs to co-simulate software for them (with speed up to hundreds of thousands instructions per second) and designed hardware on user pointed level (gate level, register transfer level, functional level).

 As another important feature HLCCAD provide (transparently for designer) simulation, hardware acceleration and emulation with help of UniICS.

3.2. WInter - multiprocessor system software debugging

 In addition to software debugging for multiprocessor systems Winter allows to simulate in parallel hardware and external environment using programming models. The simulation speed is up to ten millions instructions per second (Pentium II, 1 GHz, 256 MB RAM). WInter combine all the best debug features from known debuggers.

3.3. GENMOD - tools for processor and peripherals models generation

 GENMOD allows to describe processor resources (bits, flags, registers, memory), addressing mode, instructions and peripherals algorithms, etc. Then the processor model on assembler Intel 80386 is generated automatically. After compilation that model can be used in WInter, HLCCAD, IEESD.

3.4 MPDD - tools for microprogram device development

 To develop devices with complex functions designer can write program on special language (Micro-C or Micro-Assembler), debug it with help of WInter and generate debugged schemes and synthesizable VHDL-descriptions of data and control paths for that device.

3.5. UniICS - universal in-circuit simulator

 UniICS is hardware/software kit now realized on Altera FPGA, that provides data transition between the first part of design simulated in HLCCAD and the second part of design emulated by real external hardware. In addition UniICS provides loading pointed part of the design into the same FPGA.

3.6. UniICE - universal in-circuit emulator

 UniICE is hardware/software kit that now realized on Altera FPGA. It provides all common features of hardware processor emulators and open interface to external processor emulation. From the other hand, software development with UniICE is supported by integration UniICE with WInter. There is realized external emulation for Intel 8051 processor family.

3.7. UniSAn - universal syntax analyzer

 To define text language (programming language, design language, test language, scenario language etc.) designer can use extended Backus-Naur Forms (BNF). As BNF extension designer can point "functions of actions", that integrate this BNF-definition with interpreters, code generators and so on. UniSAn provides analysis of these BNF-definitions, error diagnostics and compiling correct definitions into binary data. This binary data is
 used by universal syntax analyzer to analyze according texts and to call defined "functions of actions". The main advantage of UniSAn (comparing with other such tools, as Lex and Yacc for example) is simplicity of the language definition, so time frame reducing for development of the language interpreters/compilers with good compilation speed.

3.8. RtASM - retargetable assembler

 RtASM - retargetable assembler is a special tool based on UniSAn. RtASM allows to reduce time needed to create assembler for a given target processor architecture. RtASM includes C-library ASMLib that contains near 20 thousands of C-lines that can be used to retarget assembler.

3.9. Interaction with distance learning system

 Distance learning system (http://dl.gsu.unibel.by) allows Internet-user to register, to get the list of active courses, to subscribe chosen courses, to get theory and problems. Solved problems (solutions) can be uploaded into the system. If the course solutions are checked by tutors, they are put into queue, until tutor open the solutions, check them, put marks and comments. If the course solutions are checked automatically, then the according software is started and do the same work (open the solutions, check them, put marks and comments).

 At the current time the following software tools are integrated into the distance learning systems as automatic checkers:

· HLCCAD - to simulate and evaluate hardware projects

· WInter - to simulate and evaluate assembler programs for Intel 8051, Motorola 68HC05/08, Atmel AVR, Microchip PIC

· HLCCAD - to simulate and evaluate hardware projects

· IEESD - to simulate and evaluate embedded systems designs including hardware and software.

 These possibilities are used for students of mathematical faculty of the Gomel Fr.Scaryna State University when studying such course as "Foundation of Computers" as well as for all who take part in Gomel Computer Science Week (http://www.gsu.unibel.by/gcsw) when participate in the contests on assembler programming, hardware design, embedded HW/SW systems development.

4. Application examples for multiprocessor network modeling

4.1. Multiprocessor network modeling in HLCCAD

The test case is multiprocessor network for the following application. In a building there are meters
 of consumption speed of some resources (for example, water, gas, electricity etc.). The multiprocessor network is used to provide collection and visualization of meters data. Each meter is connected with its own microcontroller. In addition, special microcontroller provides data gathering and visualization. All microcontrollers form
 a network, interacting according to I2C standard.

In order to simulate meters activity corresponding model were developed in Object Pascal. Such model creates a window to control the resource consumption speed by computer mouse.

Then assembler control software was developed for each microcontroller (Texas Instruments TMS370, Motorola MC68HC08, Intel 8051, Atmel AT90S2323).

[image: image1.png]2 pevicecitar =lolx|

net |

Package Scheme |

[Rlo =5ttt #5114 »
5|
=

=

= seLlsa

KIN|

Fig. 1. The scheme of HomeNet example.

[image: image2.png]©ain Opasca wm Cngaska

EEEE L TE

3Dh, 40k, 3Fh, 00h, 79h, 40k, 3Fh, 00k, 3Eh, 40k, 3

3£h, 6, SBh, 4Fh, 661, 6Dh, TDh, 7h, TFh, 6Fh, 771
on

; Init stack

; Init ports

Fig. 2. The window with program for Atmel AT90S2313.

To evaluate HLCCAD simulation productivity the scheme with four controllers was repeated from 2 to 200 times.

 The table 1 contains the simulation results. First line shows how much blocks (with all four controllers in each) were used at this simulation. Each number in the following four lines show how much instructions per second were simulated for according controller (line) and according number of blocks (column).

 So from the last column one can see that HLCCAD simulating 800 microcontrollers provided execution speed of more than 24,000 instructions per second.

Table 1.

Simulation productivity in HLCCAD

Number of blocks
1
2
3
4
5
10
20
50
100
200

TMS370
24860
12176
7867
5627
4324
1616
633
228
107
53

MC68HC08
12430
6088
3933
2814
2162
808
316
114
53
27

Intel 8051
679
324
210
150
115
43
17
6
3
2

AT90S2323
18473
9053
5849
4184
3214
1202
471
169
80
40

For one block
56442
27641
17859
12775
9815
3669
1437
517
243
122

For all blocks
56442
55282
53577
51100
49075
36690
28740
25850
24300
24400

4.1. Multiprocessor network modeling in WInter

 The same microprocessor network was simulated in WInter. The simulation results are represented in table 2.

Table 2

1*4
25*4
50*4
75*4
100*4
125*4

1’032’828
768’947
536’991
453’332
409’245
372’123

150*4
175*4
200*4
225*4
250*4

360’567
351’419
345’737
339’485
337’268

 For simulation of the network in WInter we can see more than 1,000,000 executed instructions per seconds for 4 microcontrollers and more than 330,000 executed instructions per second for 1000 microcontrollers.

 The number of executed instructions per second can be approximated by the following formula (where n is the number of simulated microcontrollers)

F(n) = 107 / (4,668747823 + 2,506703209 * log2(n))

Graph of this function is represented at the Fig.3

[image: image3.png]500000
450000
400000
350000
300000
F(n)250000
200000
150000
100000
50000

077100 200 300 400 500 600 700 800 960 1000
n

Fig. 3. Graph of the F(n)

5. Conclusion

 This article is devoted to the set of tools developed in New IT Research Labs (Gomel, Belarus) for through joint design of hardware and software of multiprocessor embedded systems. By construction this toolset ideally accords for Network-On-a-Chip Hardware/Software co-design, co-simulation and co-debugging.

 The toolset is used at studying process of Gomel Fr.Scaryna State University as well as at applied embedded systems development. The toolset is regularly presented on exhibitions, for example, on CeBIT 2002 and CeBIT 2003 (Hannover, Germany).

References

 [1] M.Dolinsky "High-level design of embedded hardware-software systems", "Advances in Engineering Software", Vol 31, No 3, March, 2000, UK, Oxford, "ELSEVIER"

 [2] Dolinsky M.S. "Integrated Environment IEESD-2000 for embedded system development", Automatic Control and Computer Sciences, Allerton Press, New York, 1999, Vol.33, No 3, pp. 24-32

 [3] Dolinsky M.S., Ziselman I.M., Fedortsov A.O "In-circuit emulators of microprocessors and microcontrollers" , Automatic Control and Computer Sciences, Allerton Press, New York, 1999 Vol 33, No 1, pp.53-56

 [4] Dolinsky M.S., Ziselman I.M., Harrasov A.A. "Computer-Aided design of microprogrammed devices", Automatic Control and Computer

Sciences, Allerton Press, New York, 1997, Vol. 31, No 5, pp.59-63

 [5] Dolinsky M., Ziselman I., Belotsky S. "Metalanguage for Peripherals Description and Simulation" Tagungsband 1 des 42. Internationalen Wissenschaftlichen Kolloquiums, Seite 587.

 [6] Benini L., De Micheli G. "Networks on a Chips: A New SoC Paradigm", IEEE Computer, January 2002, Vol.35, No 1, p. 70-78

 [7] Dally W., Towles B. "Route Packets, Not Wires: On-Chip Intercnnections Networks", Proceedings of the Design Automation Conference, 2001, p. 100-105

Хочу заметить, что мои познания в английском далеки от совершенства. Я кое-где могу ошибиться или даже не въехать.

�Вероятно, здесь имеется в виду "созданных", а не "отлаженных".

�Не понял оборота...

� В исходном предложении слова как-то не вязались, но, возможно, я недопонял. Я понял так: Сквозная проверка предполагает создание на начальном этапе разработки встроенной системы адекватной модели внешней среды и полной системы тестов.

�Я не совсем знаю, что в данном случае имеется в виду. Есть идея просто убрать слова, связанные с этим примечанием.

�Enumerate значит, скорее, перенумеровать.

�Не уверен.

�В словаре насчет transducer написано преобразователь ; датчик; приемник Синонимы: sensor , receiver

�Compound требует дополнения (не помню, как это по научному называется).

